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a b s t r a c t 

The aim of this study is to investigate the effects of rapid testing and social distancing in controlling 

the spread of COVID-19, particularly in the city of Jakarta, Indonesia. We formulate a modified suscepti- 

ble exposed infectious recovered compartmental model considering asymptomatic individuals. Rapid test- 

ing is intended to trace the existence of asymptomatic infected individuals among the population. This 

asymptomatic class is categorized into two subclasses: detected and undetected asymptomatic individu- 

als. Furthermore, the model considers the limitations of medical resources to treat an infected individual 

in a hospital. The model shows two types of equilibrium point: COVID-19 free and COVID-19 endemic. 

The COVID-19-free equilibrium point is locally and asymptotically stable if the basic reproduction num- 

ber (R 0 ) is less than unity. In contrast, COVID-19-endemic equilibrium always exists when R 0 > 1 . The 

model can also show a backward bifurcation at R 0 = 1 whenever the treatment saturation parameter, 

which describes the hospital capacity, is larger than a specific threshold. To justify the model parameters, 

we use the incidence data from the city of Jakarta, Indonesia. The data pertain to infected individuals 

who self-isolate in their homes and visit the hospital for further treatment. Our numerical experiments 

indicate that strict social distancing has the potential to succeed in reducing and delaying the time of 

an outbreak. However, if the strict social distancing policy is relaxed, a massive rapid-test intervention 

should be conducted to avoid a large-scale outbreak in the future. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coronavirus disease 2019, or COVID-19, is an infectious disease

aused by a new type of coronavirus named severe acute respi-

atory syndrome coronavirus 2 (SARS-CoV-2), which is known to

ave originated in the city of Wuhan, China in December 2019 [1] .

his virus is transmitted from human to human and has spread

idely across China and 214 other countries and territories. It is

pread through droplets that exit the nose or mouth when a per-

on infected with COVID-19 coughs or exhales. These droplets then

and and settle on surrounding objects and surfaces. If a person

ho touches any of those objects or surfaces then touches their

yes, nose, or mouth, they may become infected. Transmission can

lso occur if a person inhales droplets from a cough or breath

f a person infected with COVID-19 [2] . On March 12, 2020, the
∗ Corresponding author. 
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orld Health Organization (WHO) declared COVID-19 as a pan-

emic. Till May 16, 2020, there were 4,338,658 cases and 297,119

eaths worldwide. In Indonesia, there were 17,025 positive COVID-

9 cases and 1,089 deaths till May 13, 2020 [2] . 

According to the WHO [3] , COVID-19 generally has an incuba-

ion period of 5–6 days, with a range of 1–14 days. The symp-

oms of COVID-19 are nonspecific and vary widely, ranging from

o symptoms to severe pneumonia and eventual death. Based on

pecific cases, some of the symptoms of COVID-19 include fever,

ry cough, fatigue, nasal congestion, diarrhea, and headache. Peo-

le who are at high risk for severe illness include those aged 60

ears and over and those with hypertension, diabetes, cardiovascu-

ar problems, cancer, or a chronic respiratory disease. The mortality

ate increases with age, with the highest death rate among people

ged over 80 years. In children, the disease is relatively rare. 

Each country is at a different stage of the epidemic. In most

ountries where the spread of the virus has caused outbreaks with

xponential growth, governments have called for physical distanc-

ng and movement restrictions, commonly known as lockdown , to

https://doi.org/10.1016/j.chaos.2020.110042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110042&domain=pdf
mailto:aldiladipo@sci.ui.ac.id
https://doi.org/10.1016/j.chaos.2020.110042


2 D. Aldila, S.H.A. Khoshnaw and E. Safitri et al. / Chaos, Solitons and Fractals 139 (2020) 110042 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

a  

l  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

W  

m

 

 

 

 

 

 

 

 

 

 

 

 

m  

o  

i

A

 

H  

r  
slow the spread of the COVID-19 outbreak [4] . Some of these coun-

tries include China, Italy, and the United Kingdom. Moreover, there

are some countries that have managed to handle the COVID-19

outbreak without a lockdown; one such country is South Korea.

Based on a report in [5] , South Korea conducted massive numbers

of polymerase chain reaction tests, which reached 726,747 by May

15, 2020 [6] . 

In addition to death, this pandemic has also had negative psy-

chological, economic, and social impacts globally. The COVID-19

pandemic has resulted in changes in the work environment, indi-

rectly affecting gender inequality, and an increased risk of suicide

owing to lockdown, social distancing, and economic crisis [7] . Panic

in communities may be reduced by educating the public regarding

the predictions of the COVID-19 epidemic and the interventions

that must be conducted. Communities must also unite and work

together to help governments overcome the epidemic by following

the guidelines provided by the relevant authorities [7] . 

Several mathematical models have been proposed by several

authors to understand the spreading mechanism of COVID-19.

In [8–14] , the authors proposed a modified susceptible-exposed-

infected-recovered (SEIR) model to understand the effects of un-

detected infection, hospitalization, and quarantine. The model was

analyzed to determine the equilibria and the basic reproduction

number. Parameter estimation was conducted by the authors in

[11,12,15,16] using a statistical approach involving a Bayesian or

Markov Chain Monte Carlo method. In addition to compartmental

deterministic modeling, the spread of COVID-19 can be predicted

statistically using a time-series approach [17–19] . A time-series

model is effective owing to its ability to accommodate the factors

influencing the spread of COVID-19 that cannot be calculated us-

ing other statistical approaches [17] . A frequently used time-series

model is the autoregressive integrated moving average (p, d, q). 

In this study, we propose a modified SEIR model that considers

asymptomatic cases. These asymptomatic cases describe a hidden

case in the field. As an intervention, rapid testing has been im-

plemented by many countries to detect infected individuals in this

asymptomatic group. Therefore, we categorize our asymptomatic

individuals into two groups: detected and undetected. Further-

more, we also accommodate the limitation of resources for med-

ical treatment. This is an extremely important factor that will have

an essential role in a successful eradication of COVID-19. Many

countries are not ready for an exponential growth of COVID-19

cases because many hospitals will become overwhelmed by the

high number of patients. To validate the model, COVID-19 inci-

dence data from the city of Jakarta are used for parameter esti-

mation. The basic reproduction number is calculated, and a sensi-

tivity analysis of the model is conducted. The model is then used

to predict the effects of social and physical distancing to stop the

spreading of COVID-19, and to monitor the effects of the plan to

gradually ease social distancing guidelines of the government in

Jakarta. 

The remainder of this paper is organized as follows. In

Section 2 , the construction of the SEA u A d IR compartmental model

is described. Next, the mathematical properties of the model,

such as the equilibrium points, basic reproduction number, and

existence of backward bifurcation, are detailed in Section 3 . In

Section 4 , we explain the real-world problem using the incidence

data of Jakarta, Indonesia. A discussion on the basic reproduction

number and the results of the sensitivity analysis are provided in

Section 6 . Finally, some conclusions are presented in Section 7 . 

2. Proposed SEA u A d IR model 

The objective of our study is to analyze the effect of rapid test-

ing and self-monitored isolation, and to predict the long-term dy-

namics of the incidence data of Jakarta, Indonesia. To achieve these
urposes, our model should consider asymptomatic cases, as well

s a parameter describing a rapid test intervention. To achieve this,

et us divide the human population into six categories based on

heir health status: 

(i) Susceptible population ( S ( t )) : = Group of susceptible individ-

uals. 

(ii) Exposed population ( E ( t )) : = Group of individuals, who are

already infected by COVID-19, but not yet infective. 

(iii) Infected population ( I ( t )) : = Group of an infected individuals

who shows symptoms and are treated in a hospital. Limited

social interactions occur in this group of individuals. 

(iv) Asymptomatic undetected population ( A u ( t )) : = Infected

population having a capability to transmit COVID-19, do not

show any symptoms, and undetected by the government.

Such individuals have a larger probability of spreading the

disease compared with I and A d . 

(v) Asymptomatic detected population ( A d ( t )) = Individuals in

this category are similar to those in A u in terms of their

health status, but have already been detected by the gov-

ernment through a swab-test, rapid test, or other tests.

Although this group of individuals has the capability of

spreading the disease, they do not isolate themselves in a

hospital owing to a limited hospital capacity. Therefore, a

monitored self-isolation is applicable to them. 

(vi) Recovered population ( R ( t )) : = Recovered individuals with a

short-term immunity to COVID-19. 

Therefore: 

 = S + E + I + A u + A d + R. 

e make the following assumptions for the formulation of the

odel. 

a) The human population is homogeneously mixed. 

b) Rapid testing for COVID-19 is implemented to identify infected

individuals among the population and is provided to an indi-

vidual who does not show any symptoms. Therefore, this rapid

testing is given to an individuals in all types of compartments,

except I . 

c) Asymptomatic undetected individuals can socialize more than

those in I and A d owing to the absence of symptoms . 

d) Disease induced death only exists for individuals in I . 

e) Infected individuals in hospitals have a chance to recover faster

than infected individuals who have not received medical treat-

ment. Caused by a limited number of beds or other medical

resources in a hospital, we assume that the additional recovery

rate for an infected individual in the hospital is saturated with

respect to the number of patients that need to be handled, us-

ing the saturated parameter b . 

Using the transmission diagram given in Fig. 1 and the afore-

entioned assumptions, the model to describes the transmission

f COVID-19 by considering rapid testing and asymptomatic cases

s expressed as the following systems of equation. 

S ′ = � − βS ( A u + ξi I + ξa A d ) − μS + δR, 

E ′ = βS ( A u + ξi I + ξa A d ) − αE − μE, 

A 

′ 
u = pαE − νA u − γ0 A u − μA u , 

 

′ 
d = νA u − γ0 A d − ηA d − μA d , 

I ′ = ( 1 − p ) αE + ηA d −
(
γ0 + 

γ1 

1 + bI 

)
I − μI − φI, 

R 

′ = γ0 ( A u + A d ) + 

(
γ0 + 

γ1 

1 + bI 

)
I − μR − δR. (1)

ere, �, β , μ, and φ are the natural recruitment rate, infection

ate, natural death rate, and death rate from COVID-19, respec-
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Fig. 1. Transmission diagram of COVID-19 spread considering asymptomatic undetected cases and rapid-test. 
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ively. ξ i and ξ a represent the reduction of β for I and A d , respec-

ively, owing to isolation at home or in a hospital. Furthermore, α,

0 , and δ denote the progression rate of COVID-19 based on its in-

ubation period, natural recovery rate, and disappearance of tem-

oral immunity, respectively. Note that p describes the proportion

f exposed individuals who have progressed into asymptomatic in-

ividuals, γ 1 is the enhancement of natural recovery rate owing to

reatment in a hospital, η is the rate of hospitalization from A d to I ,

nd ν is the effort required for early detection of COVID-19 infec-

ion. Note that system (1) is supplemented with an non-negative

nitial condition: 

 ( 0 ) ≥ 0 , E ( 0 ) ≥ 0 , I ( 0 ) ≥ 0 , A u ( 0 ) ≥ 0 , A d ( 0 ) ≥ 0 , R ( 0 ) ≥ 0 . 

. Model analysis 

.1. Basic properties of the model 

It is not difficult to prove that all variables in system (1) remain

onnegative for all time t ≥ 0 as long as the initial conditions are

onnegative. Next, we show that our model is well-posed in bio-

ogical meaning. Let us consider the possible region 

 = 

{
( S, E, I, A u , A d , R ) ∈ R 

6 
+ : N ≤ �

μ

}
. 

Summation of all rates of change for each variable in sys-

em (1) yields 

dN 

dt 
= � − μN − ψ I ≤ � − μN. (2) 

learly, if N > 

�
μ , then we have that dN 

dt 
< 0 . Since dN 

dt 
is bounded

y � − μN, we have that N(t) ≤ N(0) e −μt + 

�
μ

(
1 − e −μt 

)
. Further-

ore, we have that N(0) ≤ �
μ → N(t) ≤ �

μ . Additionally, it can be

een that every solution of our COVID-19 model in (1) with the

nitial condition in D will remain in D for all t > 0. Therefore,

e have that D is positively invariant and attracting. Hence, the

OVID-19 model in (1) is well-posed. 

 0 = 

β�α[ ξi ( ην + ( 1 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) + p ( νξa + η

μ( μ + φ + γ0 + γ1 ) ( μ + ν + γ0 ) ( μ + η +
.2. Qualitative analysis of the model 

.2.1. COVID-19 free equilibrium and the basic reproduction number 

Considering the right-hand side of system (1) is equal to zero,

e have two types of equilibrium points for system (1) . The first

quilibrium is the COVID-19 free equilibrium point, which is given

y 

 0 = ( S, E, I, A u , A d , R ) = 

(
�

μ
, 0 , 0 , 0 , 0 , 0 

)
. (3) 

sing the next-generation matrix approach [20] , the basic repro-

uction number of system (1) is given by ( See Appendix A for the

erivation of the R 0 ) 

+ γ0 ) ( μ + φ + γ0 + γ1 ) ) ] 

 ( α + μ) 
. (4) 

From the results in [21] , we have the local stability criteria of

 0 depending on R 0 in the following theorem. 

heorem 1. The COVID-19 free equilibrium E 0 is locally asymptoti-

ally stable if R 0 < 1 , and unstable otherwise. 

Threshold quantity R 0 presents the expected number of new

OVID-19 infections generated from one primary infection into an

bsolute susceptible population during a single infection period.

rom the results of Theorem 1 , it can be shown that COVID-19

an be eliminated from the population if R 0 < 1 . Please note that

 0 in (4) is a basic reproduction number when a rapid test is im-

lemented. When a rapid test is not implemented into the model,

hen R 0 in (4) is reduced to the following: 

 

∗
0 = 

�

μ
× β

α + μ
× α

[
(1 − p) ξi 

μ + φ + γ0 + γ1 

+ 

p 

μ + γ0 

]
. (5) 

his shows the multiplication among the total human population

hen no COVID-19 exists, ratio between the infection rate and ex-

osed/incubation period of category E , and infection period of cat-

gories A u and I . It is easy to see that reducing R 

∗
0 

is highly related

o reducing β , which can be implemented by reducing the contact

robability through lockdown or social distancing, and reducing ξ i 

y conducting a proper quarantine procedure in a hospital, such
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that ξ i → 0. Another way to reduce R 

∗
0 is by increasing the recov-

ery rate owing to hospitalization ( γ 1 ). Further discussion on the

complete R 0 is provided in Section 5 . 

3.3. The COVID-19 endemic equilibrium points 

The endemic equilibrium point of system (1) is expressed as 

E 1 = 

(
S ∗, E ∗, I ∗, A 

∗
u , A 

∗
d , R 

∗), (6)

where S ∗, E ∗, A 

∗
u , A 

∗
d 
, R ∗ expressed as a functions of I ∗ are described

in Appendix B , whereas I ∗ is taken from the positive roots of the

following third order polynomial : 

P ( I ) = a 3 I 
3 + a 2 I 

2 + a 1 I + a 0 = 0 , (7)

with 

a 3 = 

b 2 β( 1 − p ) ξi ( μ + γ0 ) ( μ + η + ν + γ0 ) + ( μ + φ + γ0

( 1 − p ) αδφγ0 ( μ + η + ν + γ0 ) + μ( μ + φ + γ0 ) ( μ + ν + γ

a 0 = ( δ + μ) μ( μ + φ + γ0 + γ1 ) ( μ + ν + γ0 ) ( μ + η + γ0 ) ( α + μ

Here, a 2 and a 1 have significantly long expressions and are there-

fore omitted in this study. Because a 3 is always positive, and a 0 < 0

if R 0 > 1 , we have the following theorem. 

Theorem 2. System (1) has always a COVID-19 endemic equilibrium

pint whenever R 0 > 1 . 

Proof. Note that P(I) has one zero roots whenever a 0 = 0 ⇐⇒
R 0 = 1 , whereas the other two roots can be positive, negative, or

even imaginary. Let us consider the most extreme case in which

we have no positive roots. Because we have a 3 > 0, we then

have lim I→−∞ 

P(I) = −∞ and lim I→∞ 

P(I) = ∞ . Therefore, when

a 0 < 0 ⇐⇒ R 0 > 1 , we have the polynomial is being translated

downward and providing one positive root. This completes the

proof. �

Theorem 1 and 2 indicate that R 0 become the endemic thresh-

old; this occurs because,when R 0 < 1 , we have that the COVID-19

free equilibrium is stable; however, when R 0 > 1 , then we have

at least one positive COVID-19 endemic equilibrium. Furthermore,

since the polynomial is third-order , we have at most three COVID-

19 endemic equilibrium. Next, we analyze the possibility of having

a COVID-19 endemic equilibrium when R 0 < 1 . The results stated

in the following theorem. 

Theorem 3. Whenever b > b ∗, where 

b ∗ = 

β∗( ( 1 − p ) ξi ( μ + γ0 ) ( η + μ + ν + γ0 ) − ηνξi − p ( μ + φ + γ

( μ + δ) ( ( 1 − p ) ( μ + γ0 ) ( η + μ + ν + γ0

and 

β∗ = 

μ( μ + φ + γ0 + γ1 ) ( μ + ν + γ0 ) ( μ + η +
�α[ ξi ( ην + ( 1 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) ) + p ( μ + φ +

system (1) has a COVID-19 endemic equilibrium point when R 0 < 1 . 

Proof. For the proof of this theorem, please refer to

Appendix C . �

As a direct consequence of Theorem 3 and 2 , we have the fol-

lowing corollary. 

Corollary 1. System (1) has two endemic equilibrium points when

R 0 < 1 if b > b ∗. 

We end this section with the following theorem to describe the

condition of a backward bifurcation of system (1) . 

Theorem 4. System (1) undergoes backward bifurcation in R 0 = 1 if

b > b ∗. In contrast , it undergoes forward bifurcation in R 0 = 1 if

b < b ∗. 
a + η + μ + γ0 ) 

+ η + γ0 ) ( α + δ + μ) 
, 

− R 0 ) . 

γ1 ) ( νξa + η + μ + γ0 ) ) k b 1 
ην) k b 2 

, (8)

 

α + μ) 

 γ1 ) ( νξa + η + μ + γ0 ) ] 
, 

roof. For the proof of Theorem, please see Appendix D �

. Parameter estimation: case study of the city of Jakarta, 

ndonesia 

.1. COVID-19 incidence data of Jakarta 

Jakarta is the capital of Indonesia, with a population of

0,374,235 as of 2019, and a population growth rate of 0.94% per

ear. Jakarta consists of six sub-governments, namely South, East,

est, North and Central Jakarta, and the Thousand Islands. The

argest population is in East Jakarta at 2,916,020 people. 

The first COVID-19 case in Jakarta was recorded on March

, 2020, from a patient who had contact with Japanese citizens

whom later on was confirmed to be positive for COVID-19). Social

istancing is the most preferred action by the Jakarta city govern-

ent to reduce the spread of COVID-19. This rule has been applied

ince April 10, 2020, which is based on Jakarta Governor Regula-

ion No 33/2020. The regulation requires the closure of schools,

ublic facilities such as malls, and many other places that might

otentially have a gathering of people in the same location . 

The data used in this study are COVID-19 incident data from

akarta, collected from March 3, to May 10, 2020. These data can

e divided into two types of active cases, namely active cases that

ust be treated in a hospital ( I ) and independent isolation at home

 A d ). The incident data used are listed in Table 1 . 

.2. Estimation of epidemiological parameters 

To conduct the parameter estimation for data-driven from

akarta, Indonesia, owing to the short-term of the data, we con-

ider model (1) but neglect the natural newborns, natural death

ate, and the drop out rate from recovered compartment due to

he possibility that a temporal immunities will expire . Based on

his assumption, Model (1) now reads as follows: 

S ′ = −βS ( A u + ξi I + ξa A d ) , 

E ′ = βS ( A u + ξi I + ξa A d ) − αE, 

A 

′ 
u = pαE − νA u − γ0 A u , 

 

′ 
d = νA u − ηA d − γ0 A d , 

I ′ = ( 1 − p ) αE + ηA d −
(
γ0 + 

γ1 

1 + bI 

)
I − φI, 

R 

′ = γ0 ( A u + A d ) + 

(
γ0 + 

γ1 

1 + bI 

)
I. 

(9)

o conduct a parameter estimation, we divided our data based on

he date that strict social distancing in Jakarta was first time im-

lemented. The first interval is from March 3, until April 10, 2020.
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Table 1 

COVID-19 incidence data from Jakarta, collected from 03 March 2020 until 10 May 2020. 

Data I A d Data I A d Data I A d 

3 March ’20 2 0 26 March ’20 324 113 18 April ’20 1769 670 

4 March ’20 2 0 27 March ’20 346 132 19 April ’20 1839 695 

5 March ’20 4 0 28 March ’20 364 134 20 April ’20 1826 752 

6 March ’20 4 0 29 March ’20 435 151 21 April ’20 1935 753 

7 March ’20 4 0 30 March ’20 449 151 22 April ’20 1985 815 

8 March ’20 4 0 31 March ’20 451 157 23 April ’20 2010 888 

9 March ’20 31 0 1 April ’20 499 176 24 April ’20 1988 959 

10 March ’20 31 0 2 April ’20 565 195 25 April ’20 1947 1050 

11 March ’20 33 0 3 April ’20 627 209 26 April ’20 1952 1099 

12 March ’20 57 0 4 April ’20 691 223 27 April ’20 1950 1169 

13 March ’20 65 0 5 April ’20 685 279 28 April ’20 2024 1206 

14 March ’20 70 0 6 April ’20 783 317 29 April ’20 2002 1238 

15 March ’20 84 0 7 April ’20 895 338 30 April ’20 2073 1272 

16 March ’20 78 7 8 April ’20 976 357 1 May ’20 2151 1312 

17 March ’20 83 27 9 April ’20 1077 405 2 May ’20 2089 1304 

18 March ’20 91 42 10 April ’20 1139 433 3 May ’20 2062 1323 

19 March ’20 121 57 11 April ’20 1152 441 4 May ’20 2080 1330 

20 March ’20 125 66 12 April ’20 1277 468 5 May ’20 2146 1370 

21 March ’20 157 71 13 April ’20 1370 521 6 May ’20 2195 1381 

22 March ’20 177 77 14 April ’20 1385 558 7 May ’20 2196 1431 

23 March ’20 225 79 15 April ’20 1424 613 8 May ’20 2281 1426 

24 March ’20 260 109 16 April ’20 1601 619 9 May ’20 2312 1442 

25 March ’20 290 112 17 April ’20 1727 643 10 May ’20 2360 1533 

D

β

W  

t  

b  

n  

s  

w  

f  

T  

β  

t  
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t  

c  
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n  
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m  

h  

f  

e  

c  

t  

t  

m  

of each variable. 

F

s

uring this interval, we found that the best fit parameters are : 

= 1 . 44 × 10 

−7 
, η = 0 . 19 , ν = 0 . 367 , ξi = 0 . 2 , ξa = 0 . 5 , 

α = 0 . 25 , 

γ0 = 0 . 27 , γ1 = 0 . 23 , φ = 0 . 06 , p = 0 . 42 , b = 10 

−4 
. 

ith these parameters, we have that R 0 in Jakarta during this in-

erval is 1.75 . This indicates that COVID-19 has a big potency to

e endemic in Jakarta if accurate, precise, and fast policies were

ot carried out soon. During the second interval, after the strict

ocial distancing implemented, we set other parameters constant,

hereas β and η should be re-estimated. In this second interval

rom April 11 until May 10, we have β = 0 . 94 × 10 −7 and η = 0 . 06 .

his data gives R 0 = 1.22 in the second interval. It can be seen that

was reduced by 34%, which indicates the effect of the social dis-

ancing policy. On the other hand, η reduced by 68.4%, since the

umber of infected individual continued increasing in the hospi-

als. Therefore, the transition from A d to I need to be reduced be-

ause of the limitation on the hospital capacity. The results of the
ig. 2. Comparison between COVID-19 incidence data of Jakarta from March 3, - May 

ystem (9) . 
arameter estimation for system (1) with respect to the incidence

ata in Jakarta are given in Fig. 2 . 

. Discussion of R 0 and sensitivity analysis 

We conduct numerical experiments in this section in three sce-

arios. The aim of the first experiment is to analyze the elastic-

ty of R 0 . From Theorem 1, 2, 3 and 4 , it is clear to see that our

odel is dependent on the size of R 0 . Understanding how R 0 be-

ave when the parameters change will help acchieve a more ef-

ective intervention to control the spread of COVID-19. The second

xperiment aims to see how the estimated parameter from the in-

idence data in Jakarta might exhibit a backward bifurcation when

he quality and size of the patients handled in the hospital get-

ing worse. The final experiment is the sensitivity analysis to deter-

ine the most significant parameters in determining the dynamics
10, 2020 in Jakarta (dotted) with the simulation of A d and I from the model in 
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Table 2 

Elasticity value of R 0 with respect to the parameters in 

system (1) . 

ω R 0 
ω ω R 0 

ω 

� 1 β 1 

μ -1.000262026 δ 0 

η −0.07563488004 ν −0.2174486541 

ξ 1 0.2088834091 ξ a 0.2268945826 

α 0.0001685711554 γ 0 −0.5986593834 

γ 1 −0.08578494311 φ −0.02237868082 

p 0.6929432923 b 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Sensitivity area of R 0 with respect to ν and β . The black curve indicates 

R 0 = 1 . 
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5.1. Elasticity of R 0 

To perform the elasticity analysis on R 0 , we calculate the nor-

malized forward sensitivity index of R 0 using the following for-

mula : 

R 0 
ω = 

∂R 0 

∂ω 

× ω 

R 0 

, (10)

where ω is the set of parameters in system (1) . For example, the

elasticity index of R 0 with respect to α is given by 

R 0 
α = 

∂R 0 

∂α
× α

R 0 

= 

μ

α + μ
. 

In a similar way, we can find all elasticity indices of R 0 for the

remaining of parameters. Substituting the parameters value found

from Section 4 and assuming � = 10 , 467 , 629 / (65 × 365) , μ =
1 / (65 × 365) and δ = 1 / 90 , the elasticity value of all parameters

in system (1) respect to R 0 is given in Table 2 . 

The positive and negative signs in Table 2 indicate increasing

and decreasing values of R 0 with respect to the parameters, re-

spectively. Therefore, we can state that R 0 increases when �, β ,

ξ i , ξ a , α or p increases. In the other hand, whenever μ, η, ν , γ 0 ,

γ 1 , or φ increases, then R 0 will decreases. Furthermore, for an ex-

ample, since 
R 0 
ν = −0 . 2174486541 , increasing ν for 10% will re-

duce R 0 2.174486541%. A similar interpretation is given for the re-

maining parameters in Table 2 . It is interesting to see that the sat-

uration parameter b , which describes the capacity of the hospital

or the number of a medical officers, does not affect the size of

R 0 since 
R 0 

b 
= 0 . However, b plays an important role in deter-

mining whether the system (1) undergoes a forward or backward

bifurcation when R 0 = 1 . From Table 2 , it can be seen that β is

the most positive significant parameter that can be used to control

R 0 . Therefore, social/physical distancing is a very reasonable inter-

vention to control the spread of COVID-19. Furthermore, it can be

seen that reducing ξ i and ξ a will reduce R 0 , which indicates that

a better the reduction of contact from infected humans through

isolation in the hospital or at home is able to reduce R 0 . The most

negative index of R 0 is given by μ. However, this parameter can

not be changed in the field. The most negative index parameter

that is controllable in the field is ν , which describes the rate of

the rapid testing. Therefore, we can conclude that more massive

the government endeavor is to find the asymptomatic individuals,

and the more such individuals are asked to isolate independently

at home, the more we can reduce R 0 . Furthermore, we can see

that increasing the additional recovery rate caused by hospitaliza-

tion ( γ 1 ) will reduce R 0 . 

Fig. 3 presents an area for a combination between ν and β
that will determine the size of R 0 . It can be seen that the in-

creased value of β will increase R 0 , while an increased value of

ν will reduce R 0 . The area of β can differ into three intervals.

The first interval is when β ∈ (1 . 010 0 06455 × 10 −7 , ∞ ) . In this in-

terval, R 0 is always larger than unity for all value of ν between

0 and 1. This means that the intervention of rapid tests will not

make the COVID-19 free equilibrium stable. The second interval is
hen β ∈ (5 . 421388711 × 10 −8 , 1 . 010 0 06455 × 10 −7 ) . In this area,

 combination of ν and β should be considered carefully to reach

he condition of a stable COVID-19 free equilibrium point. For more

recisely, for a random β = β0 in the second interval, it needs

> ν∗ where 

 ∗ = − ( η + μ + γ0 ) [ �αφβ0 ξi ( 1 − p ) ( μ + γ0 ) + c 1 ] 

�αφβ0 ( μξa − μξi + φξa + γ0 ξa − γ0 ξi + γ1 ξa ) p + c 2 
, 

ith 

 1 = ( μ + φ + γ0 + γ1 ) 
(
�αφβ0 p − αμ2 − αμγ0 − μ3 − μ2 γ0 

)
, 

 2 = ( μ + η + γ0 ) ( �αφβ0 ξi − μ( μ + φ + γ0 + γ1 ) ( μ + α) ) , 

uch that COVID-19 eradicated from the community. For an ex-

mple, if β0 = 0 . 9 × 10 −7 , then it requires ν > 0.5630546276 to

chieve a stable COVID-19 free equilibrium point. The last inter-

al is when β ∈ [0 , 5 . 421388711 × 10 −8 ) . In the third interval, the

ntervention of rapid testing is not needed to reach a stable COVID-

9 free equilibrium point. However, giving a positive value of ν will

ccelerate the time needed to achieve a stable COVID-19 free equi-

ibrium point. 

.2. Forward and backward bifurcation 

From Theorem 4 , system (1) undergoes backward bifurcation

n R 0 = 1 if b < b ∗. In the other hand, when b > b ∗, then sys-

em (1) undergoes forward bifurcation in R 0 = 1 . Using estimated

arameters value from previous section, we have that R 0 = 1 when

= 8 . 599684570 × 10 −8 , and b ∗ = 1 / 573 . Therefore, we have that

ur system (1) undergoes forward bifurcation when R 0 = 1 since

 = 1 / 10 0 0 0 , which illustrated in Fig. 4 (a). On the other hand,

ackward bifurcation appears when we choose b = 1 / 100 , which

escribes a low capacity of the hospital to take care of the infected

ndividual. This is illustrated in Fig. 4 (b). 

.3. Sensitivity analysis 

We compute the local sensitivity for our suggested model equa-

ions of COVID-19 in system (1) . The computational results here

re obtained using three different techniques: non-normalizations,

alf normalizations and full normalizations using SimBiology Tool-

ox for MATLAB; see Figs. 5–7 . Interestingly, the results provide us

urther understanding to the model and give ones to identify the

ritical model parameters. Based on non-normalization technique,
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Fig. 4. Forward (a) and backward (b) bifurcation diagrams of system (1) showing the exchange of stability in R 0 = 1 . The red curve presents the COVID-19 endemic 

equilibrium point, while the blue curve indicates a COVID-19 free equilibrium point. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 5. Local sensitivity analysis with non–normalization technique in computational simulations using MATLAB for confirmed cases of the COVID-19 in Jakarta, (a) the 

sensitivity of all variables with respect to all parameters, (b) the sensitivity of all variables with respect to all parameters except β . 

Fig. 6. Local sensitivity analysis with half normalization technique in computational simulations using MATLAB for confirmed cases of the COVID-19 in Jakarta, (a) the 

sensitivity of all variables with respect to all parameters, (b) the sensitivity of all variables with respect to all parameters except β . 
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Fig. 7. Local sensitivity analysis with full normalization technique in computational simulations using MATLAB for confirmed cases of the COVID-19 in Jakarta, (a) the 

sensitivity of all variables with respect to all parameters, (b) the sensitivity of all variables with respect to parameters { ξ i , ξ d , γ 1 , φ, b, η}. 
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the most sensitive parameter in the suggested model is the infec-

tious transmission rate β; see Figs. 5 a. In addition, the susceptible

and exposed individuals are also extremely sensitive to these pa-

rameters { ξ i , p, α, γ 0 , b }, see Fig. 5 b. By using a half normalization

technique, the model states { E, A u , A d , I, R } are extremely sensi-

tive to the infectious transmission rate β , while they are less sensi-

tive to the other parameters, see Fig. 6 a and b. Furthermore, com-

putational results show that the exposed infected, asymptomatic

undetected individuals, asymptomatic detected individuals, symp-

tomatic infected and recovered individuals are more sensitive to

the set of parameters { β , p, α, ν , γ 0 } while they are less sensitive

to the other model parameters, see Fig. 7 a and b. This gives us how

public health partners pay more attention priority on interventions

for such groups. 

Consequently, identification of the critical model parameters in

this study based on computational simulations is an effective way

to further study the model both practically and theoretically and

to provide some suggestions for future improvements regarding

COVID-19 transmissions, interventions, and control of the spread

of the disease. It can be concluded that the person–to–person con-

tact, the transmission rate, the progression rate of the incubation

period, the effort for early detection through testing and the nat-

ural recovery rate may have a significant role in controlling this

disease. Other factors also have a role to infect in the infection of

people at different levels, as clearly indicated in our computational

simulations. 

6. Analyzing the plan for gradual relaxing of strict social 

distancing in the city of Jakarta, Indonesia 

In Fig. 8 , we present the estimation and actual incidence data

of COVID-19 in Jakarta, from March 3, until May 10, and then the

simulation continued for a longer period of time. Note that the pol-

icy of Jakarta government to conduct physical and social distancing

was applied on April 10, 2020. Since April 10, the reduction of inci-

dence occurs significantly. The physical distancing in Jakarta called

PSBB (in Indonesian: Pembatasan Sosial Berskala Besar (large-scale

social restriction)). It can be seen that, if social distancing interven-

tion is maintained for a longer period of time, then the outbreak

of COVID-19 in Jakarta will be significantly reduced, and delayed.

With this intervention, the hospitals can treat infected individuals

at a maximum capacity. 

Recently, the Jakarta government has planned to relax the strict

social distancing policy. This relaxed policy will be implemented in

five-phases: 
1. Phase 1: June 1- June 8. Industry and public services can oper-

ate based on the Covid-19 health protocol. 

2. Phase 2: June 8, - June 15. Shopping centers may operate as be-

fore (shops may open), but under the COVID-19 health protocol.

3. Phase 3: June 15, - July 6. Similar to phase 2, but all the schools

will not open simultaneously. 

4. Phase 4: July 6, - July 20. Economic activities may be evaluated,

for example, in case of restaurants and travel. 

5. Phase 5: July 20, - July 27. Evaluation of the social activities on

a large scale will be evaluated. 

Based on this description, it is assumed that the transmission

ate will increasing step by step from β = 1 . 05 × 10 −7 (when so-

ial distancing implemented in April 10) to β = 1 . 44 × 10 −7 (early

nfection period of data). To handle this, we assume β to be a step

unction as follows: 

( t ) = 10 

−7 ×

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 . 04 , Phase 1 : June 1,- June 8 

1 . 14 , Phase 2 : June 8, - June 15 

1 . 24 , Phase 3 : June 15, - July 6 

1 . 34 , Phase 4 : July 6, - July 20 

1 . 44 , Phase 5 : July 20, - July 27. 

(11)

sing above β( t ), the dynamics of I(t) and A d ( t ) are shown in Fig. 9 .

t appears that the policy of relaxing the strict social distancing

ule can result in an increasing number of new infections. How-

ver, it will not be as it was before social distancing was imple-

ented. The possible explanation for this is that the policy for re-

axing the social distancing is too early to take place. 

Based on the elasticity analysis of R 0 described in the previous

ection, rapid testing is one promising alternative for the eradica-

ion of COVID-19. Therefore, we simulated the results of the policy

o relax the strict social distancing rules combined with a more

apid test intervention. To simulate this scenario, we use the same

as in (11) , but increasing the rapid testing and hospitalization

ate twice larger. The results are shown in Fig. 10 . It can be seen

hat increasing rapid tests and hospitalization as a tolerance pol-

cy of relaxing the social distancing rules succeds in reducing the

umber of the infected population. Unfortunately, when the social

istancing completely stops (after July 27), then the effect of rapid

est and hospitalization is no longer able to compensate for the

mpact of relaxing the strict social distancing for the purpose of

educing the spread of COVID-19. Therefore, the number of the in-

ected populations will start to re-increase and produce a new out-

reak. 
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Fig. 8. A long-time simulation for the prediction of incidence of COVID-19 in Jakarta. 

Fig. 9. Long-time simulation for prediction of incidence of COVID-19 in Jakarta with easing of social distancing policy. 

Fig. 10. Long-time simulation for prediction of incidence of COVID-19 in Jakarta with easing the social distancing policy combined with more massive rapid test and 

hospitalization. 
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7. Conclusions 

A new deterministic compartmental model was constructed in

this study to evaluate the spreading of COVID-19 among the hu-

man population. The model considers many important factors,

such as hidden cases, rapid testing to trace hidden cases, limita-

tion of medical resources, social distancing, quarantine/isolation,

and parameter estimation for the incidence date from the city of

Jakarta, Indonesia. The model consisted of six variables and was

rigorously analyzed. A qualitative analysis of the model showed the

following results. 

1. The model exhibits two types of equilibrium points: COVID-19

free and COVID-19 endemic. The local stability of each equilib-

rium point depends on the basic reproduction number (R 0 ) .

We found that the COVID-19-free equilibrium point is always

locally asymptotically stable if R 0 is less than unity. 

2. A COVID-19-endemic equilibrium point always exists when R 0 

is larger than unity. 

3. The model undergoes a backward bifurcation phenomenon at

the associated R 0 is equal to one , whenever the satura-

tion parameter for hospitalization ( b ) is larger than a spe-

cific threshold ( b ∗). This means that whenever the medical

resources are insufficient (larger b ), the risk of the appear-

ance of a backward bifurcation increases; this is related to

the existence of the COVID-19-endemic equilibrium despite

R 0 < 1 . Therefore, the success of the intervention also de-

pends on the initial condition when the interventions is im-

plemented. The study shows that increasing the capacity of a

hospital or providing a considerably better quality of treatment

in the hospital increases the probability of avoiding a backward

bifurcation. 

Numerical experiments of the model based on the incidence

data of the city of Jakarta suggest the following. 

1. The basic reproduction number in Jakarta during the early

spread of COVID-19 is 1.75, which is larger than unity. This

means that COVID-19 will persist in the population if no inter-

vention is implemented by the government or the community. 
2. From an analysis of the elasticity of R 0 , we observe that the

infection rate ( β) is the most significant controllable parameter

to reduce R 0 , followed by the effectiveness of self-isolation and

quarantine. Smaller values of these mentioned parameters will

reduce R 0 , thereby increasing the chance of eradicating COVID-

19 from the community. 

3. The government must be careful when relaxing the policy of

strict social distancing, particularly in terms of when it should

be initiated. Mistakes in the prediction of when to start relax-

ing the social distancing policy can affect the emergence of a

second outbreak. 

4. A rapid test-based intervention has been proven to have poten-

tial in reducing R 0 as an alternative approach, instead of rely-

ing solely on a lockdown or strict social distancing. Significantly

better results might be obtained if these interventions can be

implemented simultaneously. 

During this pandemic, it is important to avoid overconfidence

n the capabilities of the model for the long term prediction of the

ata. Many assumptions were made in the study to simplify the

odel without compromising the main objective. Although many

mportant qualitative features were found from the model applied

n this study, several limitations can still be found, and an alter-

ative way to improve the model should be developed. One of the

imitations in this study is that the applied model does not include

he spatial spread of COVID-19 and the possibility of a relapse for

ecovered individuals. Further research is required in this field to

ddress this limitation and a better modeling is needed to under-

tand and anticipate the outcome of the COVID-19 pandemic. 
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A

 E ( t ), A u ( t ), A d ( t ), I ( t ) as the infected compartments and then using the 

n  the transition matrix. The transmission and transition matrices of the 

c

�  

I ore, the auxiliary matrix E is given by E = [ 1 , 0 , 0 , 0 ] 
T . Hence, we have 

t

K

 φ + γ0 + γ1 ) ( ν ξa + η + μ + γ0 ) ] 

+ γ0 ) ( α + μ) 

]
. 

T  by 

R + γ0 + γ1 ) ( νξa + η + μ + γ0 ) ] 

 γ0 ) ( α + μ) 

A

φ + I ∗ bγ0 + μ + φ + γ0 + γ1 ) 
 

)
I ∗ + ( γ0 + μ) ( γ0 + μ + ν + η) ξi 

)
+ k s 

, 

γ1 ) ( μ + ν + γ0 ) 

 

+ η ν
)
( I ∗ b + 1 ) α

, 

A
I ∗ ν

 

+ η ν
)
( I ∗ b + 1 ) 

, 

A
 γ0 + γ1 ) 

 

+ η ν
)
( I ∗ b + 1 ) 

, 

0 ( μ + ν + γ0 ) ( η + μ + γ0 ) I 
∗ + k r 

 μ + ν + η) + η ν) 
. 

a

k
 

+ γ1 ) 

k

w

A

ibrium point when R 0 < 1 , we analyze the sign of ∂ I 
∂R 0 

when R 0 = 1 

a -19 endemic equilibrium point when R 0 < 1 but close to 1. As the first 

s
 

. To acchieve this, let 

β
 ( μ + η + γ0 ) ( α + μ) 

 ( μ + φ + γ0 + γ1 ) ( ν ξa + η + μ + γ0 ) ] 
. 

S espect to R 0 from P(I) , we get : 

I

+

ppendix A. Derivation of R 0 

The basic reproduction number R 0 is calculated here by taking

otation in [20] We define T as the transmission matrix and � as

orresponding linearized subsystem are four-dimensional, with 

T = 

⎛ 

⎜ ⎝ 

0 

β �
μ

β �ξa 

μ
β �ξi 

μ

0 0 0 0 

0 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎠ 

, and 

= 

⎛ 

⎜ ⎝ 

−α − μ 0 0 0 

α p −μ − ν − γ0 0 0 

0 ν −η − μ − γ0 0 

( 1 − p ) α 0 η −γ0 − γ1 − μ − φ

⎞ 

⎟ ⎠ 

.

t can be seen that T has three zero rows in row 2, 3 and 4. Theref

he next-generation matrix is given by 

 = −E 

T T �−1 E , 

= 

[
β�α [ ξi (η ν + ( 1 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) ) + p ( μ +

μ ( μ + φ + γ0 + γ1 ) ( μ + ν + γ0 ) ( μ + η

he basic reproduction number as the spectral radius of K is given

 0 = 

β�α[ ξi ( ην + ( 1 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) ) + p ( μ + φ

μ( μ + φ + γ0 + γ1 ) ( μ + ν + γ0 ) ( μ + η +
ppendix B. Form of the COVID-19 endemic equilibrium 

The COVID-19 endemic equilibrium point is given by 

S ∗ = 

( μ + ν + γ0 ) ( η + μ + γ0 ) ( α + μ) ( I ∗ bμ + I ∗ b

( 1 − p ) 
(
bξi 

(
η ν + η γ0 + μ2 + μν + 2 μγ0 + ν γ0 + γ 2

0 

E ∗ = 

I ∗ ( μ + η + γ0 ) ( I 
∗ bμ + I ∗ bφ + I ∗ bγ0 + μ + φ + γ0 + ((

ημ + ηγ0 + μ2 + μν + 2 μγ0 + ν γ0 + pγ 2 
0 

)
( 1 − p )

 

∗
u = 

( I ∗ bμ + I ∗ bφ + I ∗ bγ0 + μ + φ + γ0 + γ1 ) p((
ημ + ηγ0 + μ2 + μν + 2 μγ0 + ν γ0 + pγ 2 

0 

)
( 1 − p )

 

∗
d = 

I ∗ p ( μ + η + γ0 ) ( I 
∗ bμ + I ∗ bφ + I ∗ bγ0 + μ + φ +((

ημ + ηγ0 + μ2 + μν + 2 μγ0 + ν γ0 + pγ 2 
0 

)
( 1 − p )

R 

∗ = 

( γ0 + μ + ν + η) ( I ∗ bp φ γ0 + ( 1 − p ) μγ1 + pφ γ0 ) + bγ

( δ + μ) ( I ∗ b + 1 ) ( ( 1 − p ) ( γ0 + μ) ( γ0 +
nd 

 s = p ( ξa ν + η + μ + γ0 ) ( I 
∗ bμ + I ∗ bφ + I ∗ bγ0 + μ + φ + γ0

+ I ∗ bημξi + ημξi , 

 r = ημγ0 + η ν γ1 + ηγ 2 
0 + ηγ0 γ1 + μ2 γ0 + μν γ0 

+ 2 μγ 2 
0 + ν γ 2 

0 + ν γ0 γ1 + γ 3 
0 + γ 2 

0 γ1 + ν γ0 . 

here I ∗ is taken from the positive roots of P(I) . 

ppendix C. Proof of Theorem 3 

To show the possible existence of the COVID-19 endemic equil

nd I = 0 . If the sign is negative, then we have at least one COVID

tep, each coefficient of a i in P(I) is rewritten as a function of R 0

∗ = R 0 
μ( μ + φ + γ0 + γ1 ) ( μ + ν + γ0 )

�α [ ξi ( η ν + ( 1 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) ) + p

ubstitute β∗ into a i , then taking the implicit derivative of I with r

 

3 ∂a 3 ( R 0 ) 

∂R 0 

+ a 3 ( R 0 ) 
∂ I 3 

∂R 0 

+ I 2 
∂a 2 ( R 0 ) 

∂R 0 

+ a 2 ( R 0 ) 
∂ I 2 

∂R 0 

 I 
∂a 1 ( R 0 ) 

∂R 

+ a 1 ( R 0 ) 
∂ I 

∂R 

+ 

∂a 0 ( R 0 ) 

∂R 

= 0 . 

0 0 0 
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 0 , or equivalently b < b ∗ where 

 γ1 ) ( ν ξa + η + μ + γ0 ) − η ν ξi ) k b 1 
+ γ0 ) − η ν) k b 2 

, 

ημ
)

 ( μ + ν + γ0 ) 
)

+ γ0 ) 

0 + γ1 ) 

γ0 + γ1 ) 

+ α) . 

nter manifold theory on system (1) . To use the center manifold theory, 

 A u = x 3 , A d = x 4 , I = x 5 and R = x 6 and let β the bifurcation parameter. 
 

as given below 

(D.1) 

um, D x f is given by 

δ

0 

0 

0 

− φ 0 

−μ − δ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

n parameter. Setting R 0 = 1 and solving for β gives 

 ( γ0 + γ1 + μ + φ) 

0 + γ1 + μ + φ) ( ν ξa + η + μ + γ0 ) ) 
. 

nvalue, and the other eigenvalues have negative real parts. 
Substituting I = 0 , R 0 = 1 , we have 

∂ I 

∂R 0 

= −
(

∂a 0 (R 0 ) 

∂R 0 

)
1 

a 1 (R 0 ) 
. 

Since 
∂a 0 (R 0 ) 

∂R 0 
is always negative, we have ∂ I 

∂R 0 
< 0 ⇐⇒ a 1 (R 0 ) <

b ∗ = 

β( ( 1 − p ) ξi ( μ + γ0 ) ( η + μ + ν + γ0 ) − p ( μ + φ + γ0 +
( μ + δ) ( ( 1 − p ) ( μ + γ0 ) ( η + μ + ν

and β = β∗, with 

k b 1 = ( η + μ + ν + γ0 ) ( ( 1 − p ) α δ φ γ0 + α δ μγ1 p ) 

+ ( μ + φ + γ0 + γ1 ) ( μ + ν + γ0 ) 
(
ημ2 + μ2 ( μ + γ0 ) + α

+ γ0 ( φ + γ0 + γ1 ) ( ν + γ0 ) + α μφ γ 2 
0 

+ α δ
((

μ2 + μν + μφ + μγ0 + ν φ
)
η + μ( μ + φ + γ0 )

+ 

(
( μ + ν + φ + 2 γ0 + γ1 ) η + μ2 

)
μ + η ( φ + γ0 + γ1 ) ( ν

+ α2 μ5 γ 2 
0 γ1 + α μ3 ( ν + φ + 3 γ0 + γ1 ) + α μ2 ν( φ + 2 γ

+ α μγ 3 
0 + α μ2 

(
2 φ γ0 + 3 γ 2 

0 + 2 γ0 γ1 

)
+ α μν γ0 ( φ + 

k b 2 = 2 ( 1 − p ) �α ξi ( μ + γ0 ) ( η + μ + ν + γ0 ) 

+ −�α ( 2 μ + 2 φ + 2 γ0 + γ1 ) ( ν ξa + η + μ + γ0 ) p 

+ μ( 2 μ + 2 φ + 2 γ0 + γ1 ) ( μ + ν + γ0 ) ( μ + η + γ0 ) ( μ

Appendix D. Proof of Theorem 4 

The backward bifurcation is shown using the concept of the ce

we make the following changes to the variables. Let S = x 1 , E = x 2 ,

Denote x = ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) 
T and 

dx 
dt 

= ( f 1 , f 2 , f 3 , f 4 , f 5 , f 6 ) 
T

dx 1 
dt 

= � − βS ( A u + ξi I + ξa A d ) − μS + δR := f 1 , 

dx 2 
dt 

= βS ( A u + ξi I + ξa A d ) − αE − μE := f 2 , 

dx 3 
dt 

= pαE − uA u − γ0 A u − μA u := f 3 , 

dx 4 
dt 

= uA u − γ0 A d − ηA d − μA d := f 4 , 

dx 5 
dt 

= ( 1 − p ) αE + ηA d −
(
γ0 + 

γ1 

1 + bI 

)
I − μI − φI := f 5 , 

dx 6 
dt 

= γ0 ( A u + A d ) + 

(
γ0 + 

γ1 

1 + bI 

)
I − μR − δR := f 6 , 

The Jacobian of system (D.1) evaluated at the disease-free equilibri⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−μ 0 −β �

μ
−β �ξa 

μ
−β �ξi 

μ

0 −α − μ
β �

μ

β �ξa 

μ

β �ξi 

μ
0 α p −μ − ν − γ0 0 0 

0 0 ν −η − μ − γ0 0 

0 ( 1 − p ) α 0 η −γ0 − γ1 − μ

0 0 γ0 γ0 γ0 + γ1 

Consider the case R 0 = 1 . Suppose that β is chosen as a bifurcatio

β∗ = 

μ( α + μ) ( μ + ν + γ0 ) ( η + μ + γ0 )

�α ( ξi ( ν η + ( 1 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) ) + p ( γ

The Jacobian matrix D x f evaluated at β = β∗ has a simple zero eige
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 eigenvalue are denoted respectively by � ω = ( ω 1 , ω 2 , ω 3 , ω 4 , ω 5 , ω 6 ) 
T 

a

ω

ω

ω

ω

ω

ω
ν + η + γ1 ) γ 2 

0 

)
 μ) 

, 

 

w

v

v 0 + γ1 + μ + φ) ( ν ξa + η + μ + γ0 ) 

0 ) ( α + μ) 

v
η + φ + γ1 ) μ + ( ν ξi + φ + γ1 ) η + ν ξa ( γ1 + φ) 

)
v 5 

( μ + ν + γ0 ) ξi 

, 

v

v

N  we only need to compute the partial derivatives of f 2 , f 3 , f 4 , f 5 at the 

C o partial derivatives of f 2 , f 3 , f 4 , f 5 are given by 

I

A
 

+ v 5 
6 ∑ 

i, j=1 

ω i ω j 

∂ 2 f 5 
∂x i ∂x j 

, 

 μ + γ0 ) p ( γ0 + γ1 + μ + φ) β

 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) 

)

F of f 2 , f 3 , f 4 , f 5 are 

I

B
 

 

1 

ω i 

∂ 2 f 5 
∂ x i ∂ β∗ , 

ν p ( γ0 + γ1 + μ + φ) �ξa 

( 1 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) ) μ

)

T urcation in the model (1) is determined by the sign of coefficient A . 

T  which gives us b > b ∗ where b ∗ is given in Theorem 3 . 
The right and the left eigenvector which associated with a zero

nd 

�
 v = ( v 1 , v 2 , v 3 , v 4 , v 5 , v 6 ) T , we have 

 1 = 

ω 5 α δ ( μ + η + ν + γ0 ) ( μ pγ1 + ( 1 − p ) φ γ0 ) + C 

( ( p − 1 ) ( μ + γ0 ) ( μ + η + ν + γ0 ) − ν η) ( δ + μ) α μ
, 

 2 = 

( γ0 + γ1 + μ + φ) ( μ + ν + γ0 ) ( η + μ + γ0 ) ω 5 

α ( ν η + ( 1 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) ) 
, 

 3 = 

( η + μ + γ0 ) ω 5 p ( γ0 + γ1 + μ + φ) 

ν η + ( 1 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) 
, 

 4 = 

ω 5 ν p ( γ0 + γ1 + μ + φ) 

ν η + ( 1 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) 
, 

 5 = ω 5 , 

 6 = 

(
( η + μ + ν + γ0 ) ( ( 1 − p ) μγ1 − φ γ0 ) − γ 3 

0 − ( 2 μ + 

ν η + ( 1 − p ) ( μ + γ0 ) ( η + μ + ν + γ0 ) ( δ +

− ω 5 ( ( μ + η) ( μ + ν) γ0 − η ν γ1 − ( ( + μ + ν + η) γ1 ) γ0 )

ν η + ( 1 − p ) ( μ + γ0 ) ( η + μ + ν + γ0 ) ( δ + μ) 

here C has a long expression with a positive sign, and 

 1 = v 6 = 0 , 

 2 = 

( 1 − p ) pξi ( μ + γ0 ) ( μ + η + ν + γ0 ) + η ν ξi + p ( γ

ξi ( μ + ν + γ0 ) ( η + μ + γ

 3 = 

(
γ 2 

0 + ( ν ξa + η + 2 μ + φ + γ1 ) γ0 + μ2 + ( ν ξa + 

( η + μ + γ0 ) 

 4 = 

( η ξi + μξa + φ ξa + γ0 ξa + γ1 ξa ) v 5 
( η + μ + γ0 ) ξi 

 5 = v 5 
ext we will calculate the values of A and B. Since v 1 = v 6 = 0 ,

OVID-19 free equilibrium. For system (D.1) the associated non-zer

∂ 2 f 2 
∂ x 1 ∂ x 3 

= 

∂ 2 f 2 
∂ x 3 ∂ x 1 

= β, 
∂ 2 f 2 

∂ x 1 ∂ x 4 
= 

∂ 2 f 2 
∂ x 4 ∂ x 1 

= β ξa , 

∂ 2 f 2 
∂ x 1 ∂ x 5 

= 

∂ 2 f 2 
∂ x 5 ∂ x 1 

= β ξi , 
∂ 2 f 5 

∂ x 5 ∂ x 5 
= 2 γ1 b. 

t follows that 

 = v 2 
6 ∑ 

i, j=1 

ω i ω j 

∂ 2 f 2 
∂x i ∂x j 

+ v 3 
6 ∑ 

i, j=1 

ω i ω j 

∂ 2 f 3 
∂x i ∂x j 

+ v 4 
6 ∑ 

i, j=1 

ω i ω j 

∂ 2 f 4 
∂x i ∂x j

= v 2 ω 1 

(
2 

ν p ( γ0 + γ1 + μ + φ) β ξa 

ν η + ( 1 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) 
+ 2 

( η +
ν η + ( 1

+ v 2 ω 1 2 β ξi + 2 γ1 b. 

or the sign of B, the association non-vanishing partial derivatives 

∂ 2 f 2 
∂ x 3 ∂ β∗ = 

�

μ
, 

∂ 2 f 2 
∂ x 4 ∂ β∗ = 

�ξa 

μ
, 

∂ 2 f 2 
∂ x 5 ∂ β∗ = 

�ξi 

μ
. 

t also follows that 

 = v 2 
6 ∑ 

i =1 

ω i 

∂ 2 f 2 
∂ x i ∂ β∗ + v 3 

6 ∑ 

i =1 

ω i 

∂ 2 f 3 
∂ x i ∂ β∗ + v 4 

6 ∑ 

i =1 

ω i 

∂ 2 f 4 
∂ x i ∂ β∗ + v 5 

6∑
i =

= v 2 

(
( γ0 + γ1 + μ + φ) ( μ + ν + γ0 ) ( η + μ + γ0 ) �

α ( ν η + ( 1 − p ) ( μ + γ0 ) ( μ + η + ν + γ0 ) ) μ
+ 

( ν η + 

+ 

v 2 �ξi 

μ
. 

he coefficient B is clearly positive; the presence of backward bif

herefore, to conduct a backward bifurcation A should be positive,
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